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• Goal:                            
Determination hadron properties 
from Lattice QCD

Lattice Method for Charged Hadrons in Magnetic Fields
                

• Hadrons: nucleon to light nuclei

• Properties: electromagnetic to start

[ Tiburzi, Vayl PRD (2013)]



Magnetic observables to compute

Magnetic polarizability of nucleon

[ Walker-Loud, Carlson, Miller PRL (2012) ]

∆H = −1

2
βM

�B2

• ChPT in single and few nucleon systems

• Experiment: 50% - 100% uncertainty

• Dominant error in determining nucleon EM mass splitting

[ Large cast of characters... ]

• Help constrain unknowns in proton structure corrections to µ-H 

[ Hill, Paz PRL (2011) ]

Magnetic polarizability of pion

• ChPT vs. Experiment: 2.5σ discrepancy

[ Engel, Patel, Ramsey-Musolf PRD (2012)]

[ Large cast of characters... ]

• Will COMPASS resolve?

• Contribution to hadronic light-by-light (constraint in π loop models)

Magnetic moments and polarizabilities of light nuclei

• Little known about moments of Λ hypernuclei    5
ΛHe

7
ΛHe



Challenging observables to compute

Magnetic polarizability of nucleon

∆H = −1

2
βM

�B2Magnetic polarizability of pion

Magnetic moments and polarizabilities of light nuclei

Compton Tensor: currently beyond reach of lattice QCD

Baryons are statistically noisy.... scales exponentially with A

Signal

Noise^2

�

{Aµ}

�qqq(t)qqq(0)� ∼ e−Mt

�

{Aµ}

�qqq(t)qqq(t)qqq(0)qqq(0)� ∼ e−3mπt

Single current insertion with B>1 never tried

∼ e−(M− 3
2mπ)t

Signal/Noise



Couple classical electromagnetic fields to quarks and then study hadron spectroscopy

Dµ = ∂µ + ig Gµ + iqAµ

Uµ(x) = eigGµ(x) ∈ SU(3)

U e.m.
µ (x) = eiqAµ(x) ∈ U(1)

Gauge links

Exploratory weak electric field studies:                                          
U(1) field couples only to valence quarks

Lattice QCD in External Fields

[ Detmold, Tiburzi, Walker-Loud ]

Strong magnetic field studies on 
thermodynamic lattices 

[ Chernodub, et al.]
[ D’Elia, Mukherjee, et al.]

[ BM&W collaboration]



U e.m.
µ (x) = eiqAµ(x) ∈ U(1)

Gauge links

Lattice QCD in External Fields

... and then study hadron spectroscopy 

Torus

Electric field

‘t Hooft quantization

A1 +A2 = L1L2

eiqBA1 = e−iqBA2

Magnetic field

A2

A1

x1

x2

�B = Bx̂3
�E = E x̂3

qB =
2πn

L2

Couple classical electromagnetic fields to quarks ...

q E =
2πn

βL

Thanks: 
Taku & Urs!
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Lattice QCD in Electric Fields

• Measure hadronic correlation functions in classical electromagnetic fields

Method basics are basic

• Study field strength dependence to determine parameters in effective action

G(τ) = �τ | 1

2H+ E2
|0� = 1

2

� ∞

0
ds e−

1
2 sE

2

�τ |e−sH
|0�

E.g. charged pion in electric field

Anisotropic clover lattices (HadSpec) 

203 × 128 mπ = 390 MeV

[ Detmold, Tiburzi, Walker-Loud PRD (2009)]

[ Schwinger PR (1951)]

[ Tiburzi NuPhA (2008)]

E = mπ +
1

2
αEE2 + . . .

Aµ = −Ex4δµ3



Lattice QCD in Magnetic Fields

• Measure hadronic correlation functions in classical electromagnetic fields

Method basics are basic

• Study field strength dependence to determine parameters in effective action

E.g. charged scalar in magnetic field
!

!

!
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Aµ = −Bx2δµ1

Need to measure small energy shifts



Lattice QCD in Magnetic Fields

• Measure hadronic correlation functions in classical electromagnetic fields
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This model does not have hadronic excited states

Aµ = −Bx2δµ1

Need to measure small energy shifts



Lattice QCD in Magnetic Fields

• Measure hadronic correlation functions in classical electromagnetic fields

Method basics are basic

• Study field strength dependence to determine parameters in effective action

E.g. charged scalar in magnetic field
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This model does not have hadronic excited states

Aµ = −Bx2δµ1

= Z0e
−E0τ + Z1e

−E1τ + Z2e
−E2τ + · · ·

... but there are Landau levels



“Wisdom” on the subject

= Z0e
−E0τ + Z1e

−E1τ + Z2e
−E2τ + · · ·

... but there are Landau levels

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�

[ Names withheld, JOURNAL (YEAR)]

Noise Barrier
Aµ = −Bx2δµ1



Charges in Magnetic Fields

• Quantization condition restrictive     
Ideally

qB =
2πn

L2

• Charged particles: Landau levels

Desired physics: deal with pile up

• Lattice two-point correlation function Aµ = −Bx2δµ1

|QB| � M2

En = |QB|
�
n+

1

2

�

∆En/M
2 = |QB|/M2

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�

= Z0e
−E0τ + Z1e

−E1τ + Z2e
−E2τ + · · ·



Charges in Magnetic Fields

• Quantization condition restrictive     
Ideally

qB =
2πn

L2

• Charged particles: Landau levels

Desired physics leads to pile up!

• Lattice two-point correlation function Aµ = −Bx2δµ1

|QB| � M2

En = |QB|
�
n+

1

2

�

∆En/M
2 = |QB|/M2

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�
À la Schwinger
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B)

�
s cosh(QBs)

Sum all Landau levels

1). Complicated function to fit

2). Landau levels subject to finite-volume effects
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Charges in Magnetic Fields

• Quantization condition restrictive     
Ideally

qB =
2πn

L2

• Charged particles: Landau levels

Desired physics leads to pile up!

• Lattice two-point correlation function Aµ = −Bx2δµ1

|QB| � M2

En = |QB|
�
n+

1

2

�

∆En/M
2 = |QB|/M2

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�
À la Schwinger

Project out lowest Landau level

1). Simple exponential function to fit

2). Lowest level has finite-volume & discretization effects

×ψ∗
n=0(x2)

= e−E0τ



Discretization Effects

x2 � 1�
|QB|

ψn=0(x2)

• Largest corrections in strongest fields

• Weak fields suspect perturbation about continuum is OK

Can make precise with 
Symanzik analysis

Assume

Expand in powers of field

Rayleigh-Schrödinger Perturbation Theory!

a2E2
0 = a2M2 + |b|−

�
C1

8
+ β

�
b2 +O(b3)

Energy of lowest lattice Landau level ψn=0(x2) = ψ(0)
n=0(x2) +

b

16
√
6
ψn=4(x2)

+ Tiny



Finite Volume Effects

• Naïve periodicity

x20 L

ψn=0(x2 − L)ψn=0(x2)

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)� !
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Finite Volume Effects

• Naïve periodicity

x20 L

ψn=0(x2 − L)ψn=0(x2)

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�

× [ψn=0(x2) + ψn=0(x2 − L)]

Naïve is, well, naïve



Finite Volume Effects

• Magnetic translation: effect of translation eaten up by gauge freedom (∞ degeneracy)

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�

× [ψn=0(x2) + ψn=0(x2 − L)]

[ Al-Hashimi, Wiese  Ann. Phys. (2009)]

Harmonic oscillator is not translationally invariant

• Magnetic periodicity: discrete subgroup on torus (finite degeneracy)

φ(x+ Lx̂2) = eiQBLx1φ(x)
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Finite Volume Effects

• Magnetic translation: effect of translation eaten up by gauge freedom (∞ degeneracy)

G(τ) =
�

�x

�χ(�x, τ)χ†(�0, 0)�

× [ψn=0(x2) + ψn=0(x2 − L)]

[ Al-Hashimi, Wiese  Ann. Phys. (2009)]

Harmonic oscillator is not translationally invariant

• Magnetic periodicity: discrete subgroup on torus (finite degeneracy)

φ(x+ Lx̂2) = eiQBLx1φ(x)

×
�
ψn=0(x2) + e−iQBLx1ψn=0(x2 − L)

+ eiQBLx1ψn=0(x2 + L) + e−2iQBLx1ψn=0(x2 + 2L)
�



Magnetic Method for Charged Hadrons

• Landau levels pile up for physically 
interesting case of small magnetic 
fields

• Larger the hadron mass, the more the 
pile up. Nuclei are charged! 

• Projection of lowest lattice Landau 
level possible: discretization primarily 
affects energy, magnetic periodicity

• Scalar case treated in detail:  π  Ηe-4   
Most nuclei have spin . . .


